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The edges of the complete bipartite graph Km,n can be colored with k colors appearing so that
no cycle subgraph is rainbow if and only if k ∈ {1, . . . ,m+n−1}. The rainbow-cycle-forbidding
edge-colorings of K2,n with n + 1 colors appearing are completely characterized and counted.

Introduction

For standard notation, terminology, and elementary facts
in graph theory, see West (2001) or any of the several excel-
lent graph theory textbooks now available. The only graphs
that will play a role here are Kn, the complete graph on n
vertices, Km,n, the complete bipartite graph with m vertices
in one part and n in the other, and Ct, the cycle on t(≥ 3)
vertices. An edge-coloring of a graph is just what it sounds
like, an assignment of “colors” or “symbols” to the edges of
the graph, one color to each edge. If G is edge-colored, a
subgraph H of G is rainbow with respect to that coloring if
and only if no two different edges of H bear the same color.
If there are no rainbow copies of H in edge-colored G,we say
that the edge-coloring of G forbids rainbow H.

Most anti-Ramsey theory has to do with conditions un-
der which there is an edge-coloring of a graph G which for-
bids rainbow H, for some H; almost always, G is a complete
graph and H is either a smaller complete graph or one of the
“usual suspects”, such as a cycle or a path. For instance,
Gouge, Hoffman, Johnson, Nunley, and Paben (2010) depart
from the following, which was well-known long before.

Theorem 1. Suppose that n ≥ 3 and t ≥ 1 are integers. The
following are equivalent.

(a) There is an edge-coloring of Kn with t colors appearing
which forbids rainbow cycles.

(b) There is an edge-coloring of Kn with t colors appearing
which forbids rainbow K3(' C3).

(c) t ≤ n − 1.

One of the results in Gouge et al. (2010) characterizes the
rainbow-cycle-forbidding edge-colorings of Kn, with n − 1
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colors appearing, sufficiently well that the essentially differ-
ent such colorings can be counted. The discoveries to be pre-
sented here were inspired by the desire to find results parallel
to these in Gouge et al. (2010), with Km,n replacing Kn and
with C4, the shortest cycle in Km,n, replacing C3, the short-
est cycle in Kn. Perhaps predictably, just because Km,n is a
less “dense” graph than Km+n, and therefore the constraint
of coloring to avoid rainbow cycles is less constraining in
Km,n, permitting too rich a variety of colorings for a succinct
description, we have not succeeded! But we do have some
results of interest; and perhaps someone will see something
in these results that we have missed.

Results

Theorem 2. Suppose that m, n and t are positive integers.
The following are equivalent.

(a) There is an edge-coloring of Km,n with t colors appear-
ing which forbids rainbow cycles.

(b) There is an edge-coloring of Km,n with t colors appear-
ing which forbids rainbow C4.

(c) t ≤ m + n − 1.

Proof. Clearly (a) implies (b).
Suppose that an edge-coloring of Km,n admits a rainbow

cycle. Since the only cycle subgraphs of Km,n are C2q, q ≥ 2,
the rainbow cycle is one of these. If q > 2 then there is a
chord of the rainbow C2q, i.e., an edge joining two vertices
on the cycle which are not adjacent on the cycle, which is an
edge of Km,n. See Figure 1.

The vertices of the chord are the endvertices of two paths
on the rainbow C2q. With each path the chord makes a cycle
subgraph of Km,n with fewer than 2q vertices. At least one of
these cycles is rainbow, because the color appearing on the
chord cannot appear on both paths, since the C2q is rainbow.

Therefore, the existence of a rainbow cycle of order > 4
in an edge-colored Km,n implies the existence of a shorter
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Figure 1. Chords of C6 and C8 which are edges of any Km,n

of which these cycles are subgraphs.

rainbow cycle. Therefore, the existence of a rainbow cycle
implies the existence of a rainbow C4. Thus (b) implies (a).

Suppose that t ≥ m + n and Km,n is edge-colored with
t colors actually appearing. Take m + n edges of different
colors, and let G be the subgraph of Km,n “induced” by these
edges. Then G is a graph with m + n edges on no more than
m + n vertices. By a fundamental result of graph theory, G
has a cycle subgraph. Since G is a rainbow subgraph of Km,n,
it follows that Km,n has a rainbow cycle subgraph. Thus (a)
implies (c).

To prove that (c) implies (a), clearly it suffices to show
that Km,n can be edge-colored with m + n − 1 colors so that
there is no rainbow cycle subgraph. We proceed by induction
on m + n. At the beginning, m = n = 1 and the claim to be
proven is obviously true.

Suppose that m + n > 1. Without loss of generality, we
suppose that n > 1. Applying the induction hypothesis let
Km,n−1 be edge-colored with m+n−2 colors appearing so that
there is no rainbow cycle subgraph. Introduce a new vertex
to form Km,n, and color all m edges incident to the new vertex
with a single color, different from the m+n−2 colors already
appearing. Clearly the result is an edge-coloring of Km,n with
m + n − 1 colors with no rainbow cycle subgraph. �

If Km,n is edge-colored, we will say that a color c appear-
ing in the coloring is dedicated to a vertex v of Km,n if the
edges c appears on are all incident to v.

Corollary 1. Suppose that Km,n is edge-colored with m+n−1
colors appearing so that there are no rainbow cycle sub-
graphs. Then for each vertex of Km,n there is at least one
color dedicated to that vertex.

Proof. Suppose that Km,n is so colored, and that v is a vertex
of Km,n. If no color is dedicated to v then m + n − 1 colors
appear on the edges of Km,n − v ∈ {Km−1,n,Km,n−1}, which
would imply, by Theorem 2, that Km,n − v, and thus Km,n,
contains a rainbow cycle subgraph. �

Corollary 2. Suppose n ≥ 2. An edge coloring of K2,n with
n + 1 colors appearing forbids rainbow C4’s if and only if
there is a one-to-one correspondence between the n vertices

in one part and a set of n of the colors such that each of the
vertices corresponds to a color dedicated to it.

Proof. If the coloring forbids rainbow C4’s then by Corollary
1 each of the n vertices has at least one color dedicated to it,
and clearly no color can be dedicated to two different vertices
in the same part, so the one-to-one correspondence exists.

On the other hand, suppose the vertices in one part of K2,n
are v1, . . . , vn, and the colors appearing in the edge-coloring
are c0, c1, . . . , cn, with ci appearing only on edges incident to
vi, i = 1, . . . , n. Every C4 in K2,n will contain two vertices vi

and v j for some 1 ≤ i < j ≤ n. If both edges incident to vi

are colored ci then no C4 containing vi is rainbow. Therefore
the only way C4 containing vi and v j can be rainbow is if ci

appears on only one of the two edges incident to vi, and c j

on only one edge incident to v j. But then c0 appears on two
edges of the C4, so the C4 is not rainbow. �

Two edge-colorings of a Km,n with labeled vertices are es-
sentially the same, or equivalent, if a relabeling of the ver-
tices and a renaming of the colors transforms one coloring
into the other. If two edge-colorings are not essentially the
same, then they are different.

Theorem 3. Suppose that n ≥ 3. The number of different
edge-colorings of K2,n with n + 1 colors appearing which
forbid rainbow C4’s is n(n+4)

4 , if n is even, and n2+4n−1
4 , if n is

odd.

Proof. Let the parts of K2,n be

W = {w1,w2} and N = {v1, . . . , vn}.

Let the colors appearing in our edge-colorings be c0, . . . , cn,
with ci dedicated to vi, i = 1, . . . , n. Then each vi has either
both edges incident to it colored ci, or one colored ci and the
other colored c0. We may assume, after possibly renaming
the vi, that the color ci appears twice at vi, 1 ≤ i ≤ n − p, and
only once at vi, n − p < i ≤ n for some p ∈ {1, . . . , n}; p ≥ 1
because c0 has to appear somewhere.

Clearly edge-colorings associated with different values of
p are essentially different. We claim that to each value of
p there correspond exactly b p

2 c + 1 different edge colorings.
To see this, observe that for a given p, and a given coloring
associated with p, c0 will appear j times at one of the wi, and
p − j times at the other, for some j ∈ {0, . . . , b p

2 c}.
Two colorings are obviously equivalent if this statement

holds for the same value of j, and are different otherwise.
Therefore the number of different colorings is

∑n
p=1(b p

2 c+

1), which is easily seen to equal the value given in the theo-
rem statement. �

The argument in the proof of Theorem 3 counts 3 different
colorings of K2,2 with 3 colors, but two of these are equiva-
lent, because the vertices of K2,2 can be renamed so that the
parts in the bipartition switch places.
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Theorem 3 is made possible by Corollary 2, which suffi-
ciently specifies the form of a rainbow-C4-forbidding edge-
coloring of K2,n with n + 1 colors appearing to make the
counting possible. For 3 ≤ m ≤ n we do not have such a
useable characterization of the rainbow-C4-forbidding edge
colorings of Km,n with m + n − 1 colors appearing. We do,
however, have the following, which almost qualifies as a re-
cursive rule for the formation of all such colorings.

Theorem 4. Suppose that 2 ≤ m ≤ n. Every rainbow-
cycle-forbidding edge-coloring of Km,n with m + n − 1 col-
ors appearing is obtainable by extending a rainbow-cyle-
forbidding edge-coloring of Km,n−1 with m + n − 2 colors
appearing.

Proof. Suppose we have a rainbow-cycle-forbidding edge-
coloring of Km,n with m + n − 1 colors appearing. By Corol-

lary 1, each vertex of Km,n has at least one color dedicated to
it. The n sets of colors dedicated to the vertices in the part
of size n are pairwise disjoint. If each one of those sets were
to have 2 or more elements, then the total number of colors
appearing would be ≥ 2n > m + n−1. Therefore, at least one
of those n vertices, call it v, has exactly one color dedicated
to it. Therefore, the coloring restricted to Km,n−v ' Km,n−1 is
rainbow-cycle-forbidding and has (m + n−1)−1 = m + n−2
colors appearing. �
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